Time-Frequency Analysis

E9 213 — August 2025 Indian Institute of Science

Course Instructor: Chandra Sekhar Seelamantula TAs: Ram Rathan, Abijith Jagannath Kamath

August 5, 2025

Contents

Fourier Series as Basis Expansions

The Fourier Transform on $L_1(\mathbb{R})$

The Fourier Transform on $L_2(\mathbb{R})$

The Fourier Transform as a Distribution

Convolution

Bandlimited Signals

Fourier Series as Basis Expansions

Fourier Basis for \mathbb{C}^N (a.k.a discrete-time Fourier series/discrete Fourier transform/FFT)

The Fourier basis for \mathbb{C}^N consists of the functions:

$$e_n(t) = \frac{1}{\sqrt{N}} e^{j2\pi nt/N}, \quad n = 0, 1, \dots, N-1$$

These functions are orthonormal:

$$\langle e_n, e_m \rangle = \frac{1}{N} \sum_{k=0}^{N-1} e^{j2\pi(n-m)k/N} = \delta_{n-m}$$

Fourier basis for $L_2([-\pi, \pi])$

The Fourier basis for $L_2([-\pi, \pi])$ consists of the functions:

$$e_n(t) = \frac{1}{\sqrt{2\pi}}e^{\mathrm{j}nt}, \quad n \in \mathbb{Z}$$

These functions are orthonormal:

$$\langle e_n, e_m \rangle = \int_{-\pi}^{\pi} e_n(t) \overline{e_m(t)} \, \mathrm{d}t = \delta_{n-m}$$

The Fourier Transform on $L_1(\mathbb{R})$

The Fourier Transform on $L_1(\mathbb{R})$

Definition (Fourier transform in $L_1(\mathbb{R})$)

For a function f in the space $L_1(\mathbb{R})$, defined as:

$$L_1(\mathbb{R}) = \left\{ f : \mathbb{R} \to \mathbb{C} : \int_{-\infty}^{\infty} |f(t)| \, \mathrm{d}t < \infty \right\}$$

The Fourier transform \hat{f} (or $\mathcal{F}f$) is a function on \mathbb{R} given by:

$$\hat{f}(\omega) = \int_{-\infty}^{\infty} f(t)e^{-\mathrm{j}\omega t}\,\mathrm{d}t$$

Here, ω represents the angular frequency.

The Riemann-Lebesgue Lemma

Lemma

The Fourier transform maps $L_1(\mathbb{R}) \to C_0(\mathbb{R})$ with the following properties

- \hat{f} is a continuous function.
- $\lim_{|\omega|\to\infty}\widehat{f}(\omega)=0.$
- The transform is a bounded linear operator: $\|\hat{f}\|_{\infty} \leq \|f\|_{1}$.

Properties of the L_1 Fourier Transform (I)

Let
$$f \in L_1(\mathbb{R})$$
.

Translation

For $a \in \mathbb{R}$, let $(\tau_a f)(t) = f(t - a)$.

$$\mathcal{F}(\tau_a f)(\omega) = e^{-j\omega a} \hat{f}(\omega)$$

(Translation in time becomes a phase shift in frequency.)

Properties of the L_1 Fourier Transform (I)

Let $f \in L_1(\mathbb{R})$.

Translation

For $a \in \mathbb{R}$, let $(\tau_a f)(t) = f(t - a)$.

$$\mathcal{F}(\tau_a f)(\omega) = e^{-j\omega a} \hat{f}(\omega)$$

(Translation in time becomes a phase shift in frequency.)

Modulation

For $\omega_0 \in \mathbb{R}$, let $(E_{\omega_0}f)(t) = e^{j\omega_0 t}f(t)$.

$$\mathcal{F}(E_{\omega_0}f)(\omega) = \hat{f}(\omega - \omega_0)$$

(Modulation in time becomes a translation in frequency.)

Properties of the L_1 Fourier Transform (II)

Differentiation

$$\mathcal{F}(f')(\omega) = j\omega \hat{f}(\omega)$$

Properties of the L_1 Fourier Transform (II)

Differentiation

If $f' \in L_1(\mathbb{R})$, then:

$$\mathcal{F}(f')(\omega) = j\omega \hat{f}(\omega)$$

(Differentiation becomes multiplication by j ω .)

The Inverse Fourier Transform on $L_1(\mathbb{R})$

The Inversion Formula

Under suitable conditions, a function f can be recovered from its Fourier transform \hat{f} . If both $f \in L_1(\mathbb{R})$ and its transform $\hat{f} \in L_1(\mathbb{R})$, then the inverse Fourier transform is given by:

$$f(t) = rac{1}{2\pi} \int_{-\infty}^{\infty} \hat{f}(\omega) e^{\mathrm{j}\omega t} \,\mathrm{d}\omega$$

■ The condition that \hat{f} must also be in L_1 is restrictive. For example, the transform of a rectangular pulse is a sinc function, which is not in L_1 .

The Fourier Transform on $L_2(\mathbb{R})$

The Fourier Transform on $L_2(\mathbb{R})$

Theorem (Plancherel's Theorem)

The Fourier transform can be uniquely extended to a unitary operator on all of $L_2(\mathbb{R})$.

Isometry (Energy Preservation):

$$\frac{1}{2\pi} \|\hat{f}\|_2^2 = \|f\|_2^2 \quad \text{or} \quad \frac{1}{2\pi} \int_{-\infty}^{\infty} |\hat{f}(\omega)|^2 \, \mathrm{d}\omega = \int_{-\infty}^{\infty} |f(t)|^2 \, \mathrm{d}t$$

Inner Product Preservation:

$$\frac{1}{2\pi}\langle \hat{f}, \hat{g} \rangle = \langle f, g \rangle$$

• As a unitary operator, the L_2 Fourier transform is invertible, with $\mathcal{F}^{-1} = \mathcal{F}^*$.

The Fourier Transform as a Distribution

Test Functions: The Schwartz Space $\mathcal{S}(\mathbb{R})$

Definition (Schwartz Space)

The **Schwartz space** $\mathcal{S}(\mathbb{R})$ is the set of all infinitely differentiable functions $\varphi : \mathbb{R} \to \mathbb{C}$ that, along with all their derivatives, decay faster than any polynomial.

$$arphi \in \mathcal{S}(\mathbb{R}) \iff \sup_{t \in \mathbb{R}} \left| t^m rac{\mathsf{d}^k}{\mathsf{d} t^k} arphi(t)
ight| < \infty \quad orall k, m \in \mathbb{Z}_+$$

Think of these as extremely well-behaved functions, like Gaussians.

The Dual Space $\mathcal{S}'(\mathbb{R})$

Definition

A **distribution** is a continuous linear functional on the Schwartz space \mathcal{S} . The space of all such distributions is the dual space, denoted $\mathcal{S}'(\mathbb{R})$.

If $T \in \mathcal{S}'$ and $\varphi \in \mathcal{S}$, we denote the action of T on φ by $\langle T, \varphi \rangle$.

Examples

1. Regular Distributions: Any function f of polynomial growth defines a distribution T_f

$$\langle T_f, \varphi \rangle = \int_{\mathbb{R}} f(t) \varphi(t) \, \mathrm{d}t$$

- 2. Singular Distributions:
 - ▶ Dirac Delta: $\langle \delta, \varphi \rangle = \varphi(0)$ Evaluation Functional
 - Derivative of Delta: $\langle \delta', \varphi \rangle = -\langle \delta, \varphi' \rangle = -\varphi'(0)$

Operations on Distributions

• **Differentiation:** For $T \in \mathcal{S}'$, the derivative T' is defined by

$$\langle T', \varphi \rangle = -\langle T, \varphi' \rangle$$

• Multiplication by Smooth Functions: If $\psi \in \mathscr{C}^{\infty}(\mathbb{R})$,

$$\langle \psi T, \varphi \rangle = \langle T, \psi \varphi \rangle$$

The Fourier Transform of a Tempered Distribution

Definition by Duality

We extend the Fourier transform from \mathcal{S} to \mathcal{S}' using the duality pairing. For any f, $\varphi \in \mathcal{S}$, Plancherel's theorem implies:

$$\frac{1}{2\pi} \int \hat{f}(\omega) \varphi(\omega) \, \mathrm{d}\omega = \int f(t) \hat{\varphi}(t) \, \mathrm{d}t \implies \frac{1}{2\pi} \langle \hat{f}, \varphi \rangle = \langle f, \hat{\varphi} \rangle$$

This motivates the definition of the Fourier transform for any distribution $T \in \mathcal{S}'$:

$$rac{1}{2\pi}\langle \hat{T}, arphi
angle = \langle T, \hat{arphi}
angle \quad ext{for all } arphi \in \mathcal{S}$$

Examples of Distributional Fourier Transforms

Fourier Transform of the Dirac Delta

$$\frac{1}{2\pi}\langle \hat{\delta}, \varphi \rangle = \langle \delta, \hat{\varphi} \rangle = \hat{\varphi}(0) = \frac{1}{2\pi} \int \varphi(t) \, \mathrm{d}t = \left\langle \frac{1}{2\pi}, \varphi \right\rangle$$

Thus, the Fourier transform of the delta function is a constant:

$$\hat{\delta}(\omega) = 1$$

Fourier Representation of Dirac Delta

The inverse transform gives the famous (and purely formal) integral representation:

$$\delta(t) = rac{1}{2\pi} \int_{-\infty}^{\infty} e^{\mathrm{j}\omega t} \, \mathrm{d}\omega$$

Fourier Transform of the Sine Function

A sine wave like $\sin(\omega_0 t)$ is a tempered distribution. Its Fourier transform is:

$$\sin(\omega_0 t) \quad \stackrel{\mathcal{F}}{\longmapsto} \quad -j\pi \left(\delta(\omega - \omega_0) - \delta(\omega + \omega_0)\right)$$

Convolution of Functions

Definition

Let $f,g \in L_1(\mathbb{R})$, the **convolution** f * g is given as:

$$(f*g)(t) = \int_{-\infty}^{\infty} f(t-\tau)g(\tau) d\tau$$

Properties

If f, g, $h \in L_1(\mathbb{R})$:

- Commutative: f * g = g * f
- **Associative:** (f * g) * h = f * (g * h)
- Young's Inequality: $||f * g||_1 \le ||f||_1 ||g||_1$ This ensures that if $f, g \in L_1$, then $f * g \in L_1$

The Convolution Theorem

Theorem

The Theorem For f, $g \in L_1(\mathbb{R})$:

$$\mathcal{F}\{f * g\}(\omega) = \hat{f}(\omega) \cdot \hat{g}(\omega)$$

Conversely, multiplication in time corresponds to convolution in frequency:

$$\mathcal{F}\{fg\}(\omega) = (\hat{f} * \hat{g})(\omega)$$

Convolution with Distributions

Definition

The concept of convolution can be extended to a test function $\varphi \in \mathcal{S}$ and a tempered distribution $T \in \mathcal{S}'$. The convolution $\varphi * T$ is a smooth function of polynomial growth:

$$(\varphi * T)(t) = \langle T, R\tau_t \varphi \rangle$$

where $\tau_t \varphi(\tau) = \varphi(\tau - t)$ is translation and $R\varphi(\tau) = \varphi(-\tau)$ is reflection.

Convolution with the Dirac Delta

The Dirac delta distribution acts as the identity element for convolution. For any $\varphi \in \mathcal{S}$:

$$(\varphi * \delta)(t) = \langle \delta, R\tau_t \varphi \rangle = (R\tau_t \varphi)(0) = \varphi(t)$$

Therefore:

$$\varphi * \delta = \varphi \implies \int \delta(t - \tau) \varphi(\tau) d\tau = \varphi(t)$$

Linear and Time-Invariant Systems

Definition

A system T mapping input signals f to outputs T(f) is:

- Linear: T(af + bg) = aT(f) + bT(g) for all signals f, g and scalars a, b
- Time-Invariant: $T(\tau_a f) = \tau_a T(f)$

Impulse Response

The response of the system to the Dirac delta δ is called the impulse response h is defined as $h(t)=T(\delta)(t)$. Suppose φ is the input to a linear and time-invariant system, then the output is given by:

$$T(\varphi) = \varphi * h$$

Bandlimited Signals

Bandlimited Signals

Definition (Paley-Wiener space)

A function $f \in L_2(\mathbb{R})$ is bandlimited if its Fourier transform \hat{f} has compact support. The Paley-Wiener space is the prototype bandlimited space, defined as

$$\mathrm{PW} = \left\{ f \in L_2(\mathbb{R}) : \mathsf{supp}\ \hat{f} \subset [-\pi, \pi] \right\},$$

Properties of the Paley-Wiener Space

Lemma

If $f \in PW$, then $\hat{f} \in L_1(\mathbb{R})$

Properties of the Paley-Wiener Space

Lemma

If $f \in PW$, then $\hat{f} \in L_1(\mathbb{R})$

Theorem (Continuity of functions in PW)

Let $f \in PW$. Then, f is a continuous function.

