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Fourier Series as Basis Expansions



Fourier Basis for CN
(a.k.a discrete-time Fourier series/discrete Fourier transform/FFT)

The Fourier basis for CN consists of the functions:

1 .
en(t) = ﬁeﬂﬂ”t/N, n=0,1,...,N—1

These functions are orthonormal:

1 N-1
<en,gm> = N Z eJZT[(nfm)k/N = 6pm
k=0
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Fourier basis for L, ([—1t, 77])
The Fourier basis for L, ([—7t, 7]) consists of the functions:

1

en(t) = €jnt, nez

These functions are orthonormal:

(en,em) = /” en(Eem(®) dt = Gnm

-7t
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The Fourier Transform on L;(RR)



The Fourier Transform on L;(RR)

Definition (Fourier transform in L1(IR))

For a function f in the space L, (IR), defined as:
L (R) = {f:]R—>C:/_O; |f(t)|dt<oo}
The Fourier transform f (or Ff) is a function on R given by:
flw) = [ fopeerar

Here, w represents the angular frequency.
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The Riemann-Lebesgue Lemma

Lemma

The Fourier transform maps L1(R) — Cy(IR) with the following properties
= f is a continuous function.
» lim f(w)=0.

|w|—o0

= The transform is a bounded linear operator: || flco < || f|1-
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Properties of the L, Fourier Transform (l)

Let f € Ly(R).

Translation
Fora € R, let (1,)(t) = f(t —a).

F(uf)(w) = e f(w)

(Translation in time becomes a phase shift in frequency.)
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Properties of the L, Fourier Transform (l)

Let f € Ly(R).

Translation
Fora e R, let (t.f)(t) = f(t —a).

F(uf)(w) = e f(w)
(Translation in time becomes a phase shift in frequency.)

Modulation _
For wy € R, let (Ew, f)(t) = X0t f(t).

F(Ewof)(w) = f(w — w)

(Modulation in time becomes a translation in frequency.)
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Properties of the L; Fourier Transform (lI)

Differentiation

E9 213 A. J. Kamath 10/29



Properties of the L; Fourier Transform (lI)

Differentiation
If f € L1(R), then:

F(f)w) = jwf (w)

(Differentiation becomes multiplication by jw.)
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The Inverse Fourier Transform on L;(IR)

The Inversion Formula

Under suitable conditions, a function f can be recovered from its Fourier transform f.

lf both f € L;(RR) and its transform f € L;(R), then the inverse Fourier transform is given
by:

)= 5= [ fl@)e do

B The condition that f must also be in Ly is restrictive. For example, the transform of a
rectangular pulse is a sinc function, which is notin L.
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The Fourier Transform on L,(RR)



The Fourier Transform on L,(IR)

Theorem (Plancherel’s Theorem)

The Fourier transform can be uniquely extended to a unitary operator on all of L,(R).
= Isometry (Energy Preservation):

B =178 or 5= [ f@Pdo= [ |ft)ar

< ’g> <f’g>

= As a unitary operator, the L, Fourier transform is invertible, with F~1 = F*.
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The Fourier Transform as a Distribution



Test Functions: The Schwartz Space S(R)

Definition (Schwartz Space)

The Schwartz space S(R) is the set of all infinitely differentiable functions ¢ : R — C
that, along with all their derivatives, decay faster than any polynomial.

¢ € S(R) < sup <oco VkmeZs

teR

dk
tqu)(t)

Think of these as extremely well-behaved functions, like Gaussians.
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The Dual Space S’'(R)

Definition
A distribution is a continuous linear functional on the Schwartz space S. The space of all

such distributions is the dual space, denoted S’(RR).
If T € S’ and ¢ € S, we denote the action of T on ¢ by (T, ¢).

Examples
1. Regular Distributions: Any function f of polynomial growth defines a distribution T

(T}, 9) / £(6)
2. Singular Distributions:

» Dirac Delta: (4, ¢) = ¢(0) Evaluation Functional
> Derivative of Delta: (&', ¢) = — (6, ¢') = —¢'(0)
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Operations on Distributions

= Differentiation: For T € &', the
derivative T’ is defined by

(T',¢) = —(T,¢")

= Multiplication by Smooth
Functions: If € €*(R),

T, @) = (T, ¢9)
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The Fourier Transform of a Tempered Distribution

Definition by Duality
We extend the Fourier transform from S to S’ using the duality pairing. For any f, ¢ € S,
Plancherel’s theorem implies:

o [f@pt@)do = [ 0o dt = 5-(9) = (£,9)

This motivates the definition of the Fourier transform for any distribution T € S’:

%@, o) = (T,¢) forallgpes
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Examples of Distributional Fourier Transforms

Fourier Transform of the Dirac Delta

1 . N A 1 B L
32690 = 0.0)=90) = 5 [orat = (50)
Thus, the Fourier transform of the delta function is a constant:

o(w) =1

Fourier Representation of Dirac Delta
The inverse transform gives the famous (and purely formal) integral representation:

5(t) = %Lmethdw

E9 213 A. J. Kamath 19/29



Fourier Transform of the Sine Function
A sine wave like sin(wyt) is a tempered distribution. Its Fourier transform is:

sin(wot) N —jmt (8(w — wp) — d(w + wy))
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Convolution



Convolution of Functions

Definition
Let f,¢ € L1(R), the convolution f x ¢ is given as:

(Fg)t) = [ flt-g(r)dr

Properties
If f,g,h € Li(R):
=« Commutative: f*xg = gx*f
» Associative: (fxg)xh = fx(gx*h)

= Young’s Inequality: ||f «g|[1 < |/f]l1/lgllx
This ensures that if f,g € L1, then fxg e L,
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The Convolution Theorem

The Theorem For f,g € L1(R):

F{f*8}(w) = f(w) - §(w)

Conversely, multiplication in time corresponds to convolution in frequency:

F{fs}w) = (fx@)(w)
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Convolution with Distributions

Definition
The concept of convolution can be extended to a test function ¢ € S and a tempered
distribution T € S’. The convolution ¢ * T is a smooth function of polynomial growth:

(¢ xT)(t) = (T, Rug)
where 7;¢(7) = ¢(7 — t) is translation and R¢(7) = ¢(—1) is reflection.

Convolution with the Dirac Delta
The Dirac delta distribution acts as the identity element for convolution. For any ¢ € S:

(px0)(t) = (6, Rnp) = (Rg)(0) = 9(t)
Therefore:
px5=¢g — /(S(t —)g(t)dt = ¢(1)
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Linear and Time-Invariant Systems

Definition

A system T mapping input signals f to outputs T(f) is:
s Linear: T(af +bg) = aT(f) + bT(g) for all signals f, g and scalars a,b
s Time-Invariant: T(7.f) = ©,T(f)

Impulse Response
The response of the system to the Dirac delta ¢ is called the impulse response h is

defined as h(t) = T(6)(t). Suppose ¢ is the input to a linear and time-invariant system,
then the output is given by:

T(p) =@x*h
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Bandlimited Signals



Bandlimited Signals

Definition (Paley-Wiener space)

A function f € L,(RR) is bandlimited if its Fourier transform f has compact support. The
Paley-Wiener space is the prototype bandlimited space, defined as

PW — {fe Ly(R) : supp f C [—ﬂrﬂ]}/
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Properties of the Paley-Wiener Space

Lemma

If f € PW, then f € L1(R)
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Properties of the Paley-Wiener Space

Lemma

If f € PW, then f € L1(R)

Theorem (Continuity of functions in PW)

Let f € PW. Then, f is a continuous function.
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