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A Problem With the Fourier Transform

The Fourier Transform
The Fourier transform of a signal s(t) is defined as:

$(w) = /oo s(t)e @t dt

Fourier Analysis is Limited

The Fourier transform tells us what frequencies are present in a signal, but it doesn't tell
us when they occur.

Design P{s}(t,w) that simultaneously captures time and frequency.
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An Example

Let’s look at a non-stationary signal, s(t), composed of piecewise sinusoids:

sin(107t) 0<t<1

s(t) =4 .
sin(307tt) 1<t<2
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Clearly shows when the signal changes. But what are
the frequencies?

|$(w)| clearly shows two peaks at 5 Hz and 15 Hz. But
when did they happen? We can't tell.

We need a simultaneous time-and-frequency transform
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A Roadmap for the Course

1. The Foundation:

e Hilbert Transform
e Analytic Signals
e Instantaneous Frequency

2. The Linear Approach:

e The Short-Time Fourier Transform (STFT)
e The Spectrogram
e The Uncertainty Principle

3. The Quadratic (Bilinear) Approach:

e The Wigner-Ville Distribution (WVD)
e Cohen’s Class of Distributions

4. A Multi-Resolution Approach:

e Splines and Sampling Theorems
e The Wavelet Transform
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Primary Texts

.wavelet

FREQUENCY of signal processing
ANALYSIS The Sparse Way

Third Edition

Stéphane Mallat

L. Cohen, Time-Frequency Analysis S. Mallat, A Wavelet Tour of Signal Processing
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Applications (l): Speech and Audio Processing

Speech/audio are typically non-stationary

+0dB
5 20 dB
‘U; 1024

< -40 dB
3

o

[

b= -60 dB

0 -
0 06 12 18 24 3 36 42 48 540 500 80dB

Time (s) Intensity

Spectrograms are often the inputs to neural networks for tasks such as
speaker classification and recognition.
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Applications (ll): Biomedical Imaging

Ultrasound Imaging

= Image of the acoustic impedence of the TRANSMIT F(t)
specimen n)n)n)
RECEIVE P, (t)
. . . . ULTRASOUND
= Received signal is a superposition of TRANSDUCER MULTILAYERED SPECIMEN

echoes from different depths Z(t)
t

K Pi(t) Py(t)
P(t) =) aPi(t — ) W #\'WU‘[W W%t
=1

= Design pulses for higher resolution — AT Apot At
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Applications (lll): Radar/Sonar
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Mathematical Preliminaries:
Normed Spaces, Banach Spaces and Hilbert Spaces



Vector Spaces (l)

Definition (Vector space)
A vector space over C is a set V with addition and multiplication that satisfies Vu,v,w € V
andw, 5 € C
1l.o+w=w+v
a(po) = (ap)o
(v+w)+u=v+ (w+u)
(a + B)v=av+ po
a(v+w) =av+aw

© N2 gk oD

v+0=v
v+ (—v)=0
lv="2v
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Vector Spaces (ll): Subspaces

Definition (Subspace)

A subspace is a nonempty subset of a vector space that is closed under addition and
scalar multiplication, i.e., S C V is a subspace of V if Vo,w € Sand « € C

1. v+weSs

2. ax €S
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Norms (1)

Definition (Norm)
A norm on a vector space V over C (or IR) is a real-valued function || - || : V — R with the
following properties for any v,w € V and a« € C
1. ||lo|| > 0and ||v|| =0iffv =0
2. [lav] = |af||o]|
3. |lv+wll < [lo]l + |[wl]|
A vector space endowed with a norm is called normed vector space.

Remark

1o =wl| = [llo]l = [lw]]
2. flo+wl? + o —w|? = 2(||o|1* + [|w]?)
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Norms (Il): Convergence

Definition (Convergence in normed spaces)

A sequence of vectors (vg, v1, - - - ) in @ normed vector space V is said to converge to
v € V when klim llo — vl =0, i.e., given e > 0, there exists a K = K(e) such that
—+o0

lv—vel| <€ Vk>K.
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Norms (lIl): Cauchy Sequences

Definition (Cauchy sequence)

A sequence of vectors (vg, 1, - - - ) in @ normed vector space is called a Cauchy sequence
when given € > 0, there exists a K = K(¢) such that

lox — vml|| <€, Vk,m > K.

Lemma (Convergent sequences are Cauchy)

Assume that V is a normed vector space, and that (vg, vy, - - - ) is a convergent sequence
in V. Then (v, vy, - - -) is a Cauchy sequence.
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Banach Spaces (l)

Definition (Banach space)

A normed vector space V with the property that each Cauchy sequence (vg,vq,---) in V
converges toward some v € V, is called a Banach space.
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Banach Spaces (ll): Examples

Examples:
= (), spaces

= L, spaces
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Inner Product Spaces (I)

Definition (Inner product space)

An inner product of a vector space V over C (or R) is a complex-valued (or real-valued)
function (-,-) : V x V — C with the following properties for any v, w,u € V and « € C (or
R)

1. (av+ Bw, u) = a(v,u) + p(w, u)
2. (,w) = (w,0)"
3. (v,v) >0and (v,v) =0iffv =0
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Inner Product Spaces (Il): Cauchy-Schwarz’ Inequality

Theorem (Cauchy-Schwarz’ inequality)

Let V be a vector space with an inner product (-,-). Then,

(v, w)| < (v,0)Y%(w,w)'/?, Yo,w € V.
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Inner Product Spaces (lIl): Induced Norms

Lemma (Inner products induces the norm)
Let V be a vector space with an inner product (-,-). Then,

1/2
7

lo]] = (v,v) veV,

defines anormonV.
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Inner Product Spaces (IV): Hilbert Spaces

Definition (Hilbert space)

A vector space with an inner product (-, -), which is a Banach space with respect to
||| = (-,-)1/%is called a Hilbert space.
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Inner Product Spaces (V): Examples

Examples:
= {5 space

= L, space
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Inner Product Spaces (VI): Orthogonality

Definition (Orthogonality)

Let H be a Hilbert space.
1. Two elements v, w € H are orthogonal if (v, w) = 0 and we write v L w
2. A collection of vectors {v; }xcy in H is an orthogonal system if (vy,vy) =0, Vk # £

3. An orthogonal system {v }ren for which ||og|| = 1, Vk € N is called an orthonormal
system
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Bases, Orthogonal Bases, Riesz Bases



Basis (I)

Definition (Basis)

A set of vectors ® = { ¢y }rexc C V, where K is countable, is called a basis for a normed
vector space V when

= itis complete in V, i.e., for any f € V, there exists a sequence « : £ — C such that

f=Y aeqp,

ke

» forany f € V, the sequence « is unique.
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Basis (I): Orthonormal Basis

Definition (Orthonormal Basis)

A set of vectors ® = { ¢ }rexc C H, where K is countable, is called a orthonormal basis
for the Hilbert space H when
= it is a basis for H, and

= it is an orthonormal set, i.e., (¢;, px) = 6; 1 Vi, k € K.
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Basis (lll): Basis Expansion

Theorem (Orthogonal Basis Expansion)

Let ® = { ¢ }xeic be an orthonormal basis for a Hilbert spaces H. The unique expansion
expansion coefficients for any f € H are given by

ap = (f, ¢x)-

Synthesis with these coefficients yield

f=Y{f o) 9x-

kel
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Parseval Equality

Theorem (Parseval Equality)

Let ® = { ¢ }xexc be an orthonormal basis for a Hilbert spaces H. The expansion
coefficients satisfies the Parseval equality

A1 =Y [Kf, o) P = [l
ke
The generalised Parseval equality:

(f,8) = (B
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Basis (IV): Examples

Examples:
= Discrete Fourier basis for CN

= Fourier basis for L,([—, 7t])
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