Time-Frequency Analysis

E9 213 — August 2025 Indian Institute of Science

Course Instructor: Chandra Sekhar Seelamantula TAs: Ram Rathan, Abijith Jagannath Kamath

August 5, 2025

Contents

An Introduction to Time-Frequency Analysis

Normed Spaces, Banach Spaces and Hilbert Spaces

Bases, Orthogonal Bases, Riesz Bases

A Problem With the Fourier Transform

The Fourier Transform

The Fourier transform of a signal s(t) is defined as:

$$\hat{s}(\omega) = \int_{-\infty}^{\infty} s(t)e^{-i\omega t} \, \mathrm{d}t$$

Fourier Analysis is Limited

The Fourier transform tells us **what** frequencies are present in a signal, but it doesn't tell us **when** they occur.

Design $P\{s\}(t,\omega)$ that simultaneously captures time and frequency.

An Example

Let's look at a non-stationary signal, s(t), composed of piecewise sinusoids:

$$s(t) = \begin{cases} \sin(10\pi t) & 0 \le t < 1\\ \sin(30\pi t) & 1 \le t \le 2 \end{cases}$$

Time Domain View

Clearly shows *when* the signal changes. But what are the frequencies?

Frequency Domain View

 $|\hat{s}(\omega)|$ clearly shows two peaks at 5 Hz and 15 Hz. But when did they happen? We can't tell.

We need a simultaneous time-and-frequency transform

A Roadmap for the Course

1. The Foundation:

- Hilbert Transform
- Analytic Signals
- Instantaneous Frequency

2. The Linear Approach:

- The Short-Time Fourier Transform (STFT)
- The Spectrogram
- The Uncertainty Principle

3. The Quadratic (Bilinear) Approach:

- The Wigner-Ville Distribution (WVD)
- Cohen's Class of Distributions

4. A Multi-Resolution Approach:

- Splines and Sampling Theorems
- The Wavelet Transform

Primary Texts

L. Cohen, Time-Frequency Analysis

S. Mallat, A Wavelet Tour of Signal Processing

Applications (I): Speech and Audio Processing

Speech/audio are typically non-stationary

Spectrograms are often the inputs to neural networks for tasks such as speaker classification and recognition.

Applications (II): Biomedical Imaging

Ultrasound Imaging

- Image of the acoustic impedence of the specimen
- Received signal is a superposition of echoes from different depths

$$P_r(t) = \sum_{k=1}^K a_k P_i(t - \tau_k)$$

Design pulses for higher resolution

Applications (III): Radar/Sonar

Radar/Sonar or Ranging

- Moving objects induce a Doppler shifts in frequency
- Signals are non-stationary!
- Change in frequency ~> velocity estimation

9/30

Mathematical Preliminaries: Normed Spaces, Banach Spaces and Hilbert Spaces

Vector Spaces (I)

Definition (Vector space)

A vector space over $\mathbb C$ is a set V with addition and multiplication that satisfies $\forall u,v,w\in V$ and $\alpha,\beta\in\mathbb C$

- 1. v + w = w + v
- $2. \ \alpha(\beta v) = (\alpha \beta) v$
- 3. (v+w) + u = v + (w+u)
- 4. $(\alpha + \beta)v = \alpha v + \beta v$
- 5. $\alpha(v+w) = \alpha v + \alpha w$
- 6. v + 0 = v
- 7. v + (-v) = 0
- 8. 1v = v

Vector Spaces (II): Subspaces

Definition (Subspace)

A subspace is a nonempty subset of a vector space that is *closed under addition and* scalar multiplication, i.e., $S \subseteq V$ is a subspace of V if $\forall v, w \in S$ and $\alpha \in \mathbb{C}$

- 1. $v + w \in S$
- **2**. $\alpha x \in S$

Norms (I)

Definition (Norm)

A norm on a vector space V over $\mathbb C$ (or $\mathbb R$) is a real-valued function $\|\cdot\|:V\to\mathbb R$ with the following properties for any $v,w\in V$ and $\alpha\in\mathbb C$

- 1. $||v|| \ge 0$ and ||v|| = 0 iff v = 0
- $2. \|\alpha v\| = |\alpha| \|v\|$
- 3. $||v + w|| \le ||v|| + ||w||$

A vector space endowed with a norm is called *normed vector space*.

Remark

- 1. $||v-w|| \ge |||v|| ||w|||$
- 2. $||v + w||^2 + ||v w||^2 = 2(||v||^2 + ||w||^2)$

Norms (II): Convergence

Definition (Convergence in normed spaces)

A sequence of vectors (v_0,v_1,\cdots) in a normed vector space V is said to converge to $v\in V$ when $\lim_{k\to +\infty}\|v-v_k\|=0$, i.e., given $\epsilon>0$, there exists a $K=K(\epsilon)$ such that

$$||v-v_k||<\epsilon, \ \forall k>K.$$

Norms (III): Cauchy Sequences

Definition (Cauchy sequence)

A sequence of vectors (v_0,v_1,\cdots) in a normed vector space is called a Cauchy sequence when given $\epsilon>0$, there exists a $K=K(\epsilon)$ such that

$$\|v_k - v_m\| < \epsilon, \ \forall k, m > K.$$

Lemma (Convergent sequences are Cauchy)

Assume that V is a normed vector space, and that (v_0, v_1, \cdots) is a convergent sequence in V. Then (v_0, v_1, \cdots) is a Cauchy sequence.

Banach Spaces (I)

Definition (Banach space)

A normed vector space V with the property that each Cauchy sequence (v_0, v_1, \cdots) in V converges toward some $v \in V$, is called a Banach space.

Banach Spaces (II): Examples

Examples:

■ ℓ_p spaces

L_p spaces

Inner Product Spaces (I)

Definition (Inner product space)

An inner product of a vector space V over $\mathbb C$ (or $\mathbb R$) is a complex-valued (or real-valued) function $\langle \cdot, \cdot \rangle : V \times V \to \mathbb C$ with the following properties for any $v, w, u \in V$ and $\alpha \in \mathbb C$ (or $\mathbb R$)

- 1. $\langle \alpha v + \beta w, u \rangle = \alpha \langle v, u \rangle + \beta \langle w, u \rangle$
- $2. \langle v, w \rangle = \langle w, v \rangle^*$
- 3. $\langle v,v\rangle \geq 0$ and $\langle v,v\rangle = 0$ iff v=0

18/30

Inner Product Spaces (II): Cauchy-Schwarz' Inequality

Theorem (Cauchy-Schwarz' inequality)

Let *V* be a vector space with an inner product $\langle \cdot, \cdot \rangle$. Then,

$$|\langle v, w \rangle| \le \langle v, v \rangle^{1/2} \langle w, w \rangle^{1/2}, \ \forall v, w \in V.$$

Inner Product Spaces (III): Induced Norms

Lemma (Inner products induces the norm)

Let *V* be a vector space with an inner product $\langle \cdot, \cdot \rangle$. Then,

$$||v|| = \langle v, v \rangle^{1/2}, \quad v \in V,$$

defines a norm on V.

Inner Product Spaces (IV): Hilbert Spaces

Definition (Hilbert space)

A vector space with an inner product $\langle \cdot, \cdot \rangle$, which is a Banach space with respect to $\|\cdot\| = \langle \cdot, \cdot \rangle^{1/2}$ is called a Hilbert space.

Inner Product Spaces (V): Examples

Examples:

ℓ₂ space

L₂ space

Inner Product Spaces (VI): Orthogonality

Definition (Orthogonality)

Let H be a Hilbert space.

- 1. Two elements $v, w \in H$ are *orthogonal* if $\langle v, w \rangle = 0$ and we write $v \perp w$
- 2. A collection of vectors $\{v_k\}_{k\in\mathbb{N}}$ in H is an *orthogonal system* if $\langle v_k, v_\ell \rangle = 0$, $\forall k \neq \ell$
- 3. An orthogonal system $\{v_k\}_{k\in\mathbb{N}}$ for which $\|v_k\|=1,\ \forall k\in\mathbb{N}$ is called an *orthonormal system*

Bases, Orthogonal Bases, Riesz Bases

Basis (I)

Definition (Basis)

A set of vectors $\Phi = \{\varphi_k\}_{k \in \mathcal{K}} \subset V$, where \mathcal{K} is countable, is called a *basis* for a normed vector space V when

• it is complete in V, i.e., for any $f \in V$, there exists a sequence $\alpha : \mathcal{K} \to \mathbb{C}$ such that

$$f=\sum_{k\in\mathcal{K}}\alpha_k\varphi_k,$$

• for any $f \in V$, the sequence α is unique.

Basis (II): Orthonormal Basis

Definition (Orthonormal Basis)

A set of vectors $\Phi = \{\varphi_k\}_{k \in \mathcal{K}} \subset H$, where \mathcal{K} is countable, is called a *orthonormal basis* for the Hilbert space H when

- it is a basis for H, and
- it is an orthonormal set, i.e., $\langle \varphi_i, \varphi_k \rangle = \delta_{i-k} \ \forall i, k \in \mathcal{K}$.

Basis (III): Basis Expansion

Theorem (Orthogonal Basis Expansion)

Let $\Phi = \{\varphi_k\}_{k \in \mathcal{K}}$ be an orthonormal basis for a Hilbert spaces H. The unique expansion expansion coefficients for any $f \in H$ are given by

$$\alpha_k = \langle f, \varphi_k \rangle.$$

Synthesis with these coefficients yield

$$f = \sum_{k \in \mathcal{K}} \langle f, \varphi_k \rangle \varphi_k.$$

Parseval Equality

Theorem (Parseval Equality)

Let $\Phi = \{\varphi_k\}_{k \in \mathcal{K}}$ be an orthonormal basis for a Hilbert spaces H. The expansion coefficients satisfies the Parseval equality

$$||f||^2 = \sum_{k \in \mathcal{K}} |\langle f, \varphi_k \rangle|^2 = ||\alpha||^2.$$

The generalised Parseval equality:

$$\langle f,g\rangle=\langle \alpha,\beta\rangle.$$

Basis (IV): Examples

Examples:

• Discrete Fourier basis for \mathbb{C}^N

• Fourier basis for $L_2([-\pi,\pi])$

